1	(a)	The molar mass of hydrogen gas is $2.02 \times 10^{-3} \text{kg} \text{mol}^{-1}$. Calculate the mass of a hydrogen molecule.
	/ L\	mass = kg [2]
	(D)	The temperature of the Earth's upper atmosphere is about 1100 K. Show that at this temperature the mean kinetic energy of an air molecule is about 2 \times 10 ⁻²⁰ J.
	(c)	[2] Show that the speed of a helium atom of mass $6.6 \times 10^{-27} kg$ at a temperature of 1100 K is about $2.5 km s^{-1}$.
	(d)	[2] The escape velocity from the Earth is 11 km s ⁻¹ . The escape velocity is the minimum vertical
	(u)	velocity a particle must have in order to escape from the Earth's gravitational field. Explain why helium atoms still escape from the Earth's atmosphere.
		[2]

[Total: 8]

2	(a)	(i)	Define the kilowatt-hour.		
		(ii)	A domestic refrigerator works at a mean power of 70W. Calculate the cost of running this refrigerator for one week at a cost of 12p per kWh.		
			cost = £[2]		
	(b)		arge jug containing 2.0 kg of milk is placed in a refrigerator. The milk cools from 18°C to over a time period of 100 minutes. The specific heat capacity of milk is 3800 J kg ⁻¹ K ⁻¹ .		
		Calculate			
		(i)	the thermal energy removed from the milk as it cools from 18 °C to 3 °C		
			energy removed =		
		(ii)	the rate at which thermal energy is removed from the milk.		
			rate = Js ⁻¹ [1]		

(c) Another container full of milk is placed in a freezer and cooled from 18°C to -18°C.

Assume that thermal energy is removed at a constant rate and that the freezing-point of milk is 0 °C. The specific heat capacity of milk below 0 °C is significantly less than its value above 0 °C.

On Fig. 3.1 sketch a graph to show the variation with time of the temperature of the milk over the range 18 °C to –18 °C. Numbers are not required on the time axis.

Fig. 3.1 [3]

[Total: 9]

3	(a)	A student investigates Brownian motion by observing through a microscope smoke particles suspended in air.			
		(i)	Describe the behaviour of the smoke particles as observed by the student.		
	Ø		In your answer, you should use appropriate technical terms spelled correctly.		
			[1]		
		(ii)	State how the observations lead to conclusions about the nature and properties of the molecules of a gas.		
			[3]		
	(b)		e molar masses of hydrogen and oxygen are 0.0020 kg mol ⁻¹ and 0.032 kg mol ⁻¹ respectively. The mean speed of hydrogen molecules at room temperature is 1800 m s ⁻¹ .		
		Cal	culate the mean speed of oxygen molecules at the same temperature.		
			mean speed = ms ⁻¹ [3]		
			[Total: 7]		
			[10441.7]		

4 (a) (i) State Boyle's law.

- (ii) For a gas which obeys Boyle's law, sketch
 - 1 on Fig. 6.1 a graph of pressure *p* against volume *V*
 - 2 on Fig. 6.2 a graph of p against 1/V.

[3]

Fig. 6.1

Fig. 6.2

(b)	A cylinder of fixed volume $0.040\mathrm{m}^3$ is filled with nitrogen gas at a pressure of $5.0\times10^5\mathrm{Pa}$ and temperature $15^\circ\mathrm{C}$. The molar mass of nitrogen is $0.028\mathrm{kgmol}^{-1}$.			
	(i)	Calculate the number of moles of nitrogen in the cylinder.		
		number of moles =[2]		
	(ii)	After a period of 100 days the pressure has fallen to 4.5×10^5 Pa, at the same temperature, because of leakage. Calculate the mass of nitrogen that has escaped.		
		mass = kg [3]		
		[Total: 10]		

5 (a) The table shows the specific heat capacities *c* of alcohol and water.

	c/Jkg ⁻¹ K ⁻¹
alcohol	2460
water	4180

(i) An alcohol thermometer is placed in 80 g of water at 20 °C. The mass of alcohol in the thermometer is 0.050 g. The water is then heated from 20 °C to 60 °C.

Calculate the ratio

energy required to warm the water from 20 °C to 60 °C energy required to warm the alcohol from 20 °C to 60 °C.

	ratio =[2]
(ii)	State and explain a situation in which the very high value of specific heat capacity for water is useful.
	roz

•	a labelled diagram of the arrangement a list of the measurements to be taken an explanation of how the value of <i>c</i> would be determined from your results
•	possible sources of uncertainty in your measurements and how these could be redu
••••	
••••	
••••	
••••	
• • • • •	

(b) Describe an electrical experiment to determine the specific heat capacity c of a liquid.

	[8]
[Tota	al: 12]